Digital System Design

Objectives:

- 1. RS latch implementation using A NOR gate.
- 2. RS latch using NAND gates.
- 3. Clocked RS latch uses a clock signal.
- 4. D Latch

1. RS latch implementation using A NOR gate

- SR latch have
 - two inputs **S** and **R**:
 - S is called set and it is used to produce **HIGH** on **Q** (i.e. store 1).
 - **R** is called **reset** and it is used to produce **LOW** on **Q** (i.e. store **0**).
 - **Q'** is **Q** complementary output.
- The output of the SR latch depends on current as well as previous inputs or state (can be changed as soon as its inputs change).
- > The *truth table* of **RS** latch is shown below:

S	R	Q	Q +	Comment
0	0	0	0	Hold state
0	0	1	1	
0	1	X	0	Reset state
1	0	X	1	Set state
1	1	X	Invalid	Avoid state

The output equations:

- $\circ \mathbf{Q} = (\mathbf{R} + \overline{\mathbf{Q}})$
- $\circ \overline{\boldsymbol{Q}} = \overline{(\boldsymbol{S} + \boldsymbol{Q})}$

Cases according to the truth table:

• **Case 1.1:S** = 0, R = 0 and initial condition: Q = 1, $\overline{Q} = 0$. The output *Q* after input is applied would be:

$$\boldsymbol{Q} = (\boldsymbol{R} + \overline{\boldsymbol{Q}}) = \boldsymbol{1}$$

And the complement output would be:

$$\overline{Q} = \overline{(S + Q)} = 0$$

• Case 1.2:S = 0, R = 0 and initial condition:Q = 0, $\overline{Q} = 1$. The output *Q* after input is applied would be:

$$O = \overline{(R + \overline{O})} = O$$

And the complement output would be:

$$\overline{Q} = \overline{(S + Q)} = 1$$

When both *S* and *R* inputs are *LOW*, the output is retained as before (i.e. there is no state change).

• Case 2.1:S = 1, R = 0 and initial condition:Q = 1, Q = 0. The output Q after input is applied would be: 1

$$\boldsymbol{Q} = (\boldsymbol{R} + \boldsymbol{Q}) =$$

And the complement output would be:

$$\overline{\boldsymbol{Q}} = \overline{(\boldsymbol{S} + \boldsymbol{Q})} = \boldsymbol{0}$$

• Case 2.2:S = 1, R = 0 and initial condition:Q = 0, $\overline{Q} = 1$. The output Q after input is applied would be:

$$\boldsymbol{Q} = (\boldsymbol{R} + \overline{\boldsymbol{Q}}) = \boldsymbol{1}$$

And the complement output would be:

$$\overline{Q} = \overline{(S+Q)} = 0$$

When **S** is **HIGH** and **R** is **LOW**, the output **Q** is **HIGH** (i.e. set mode).

• Case 3.1:S = 0, R = 1 and initial condition:Q = 1, $\overline{Q} = 0$. The output *Q* after input is applied would be: $Q = (R + \overline{Q}) = 0$ And the complement output would be: $\overline{\boldsymbol{Q}} = (\boldsymbol{S} + \boldsymbol{Q}) = \boldsymbol{1}$ • Case 3.2:S = 0, R = 1 and initial condition:Q = 0, $\overline{Q} = 1$.

The output Q after input is applied would be:

$$Q = \overline{(R + \overline{Q})} = 0$$

$$\overline{Q} = \overline{(S + Q)} = 1$$

When **S** is **LOW** and **R** is **HIGH**, the output **Q** is **LOW** (**Reset mode**).

• **Case 4.1:** S = 1, R = 1 and initial condition: $Q = 1, \overline{Q} = 0$. The output Q after input is applied would be: $Q = (\overline{R + \overline{Q}}) = 0$ And the complement output would be: $\overline{Q} = (\overline{S + Q}) = 0$ • **Case 4.2:** S = 1, R = 1 and initial condition: $Q = 0, \overline{Q} = 1$. The output Q after input is applied would be: $Q = (\overline{R + \overline{Q}}) = 0$ And the complement output would be: $\overline{Q} = (\overline{S + Q}) = 0$

When both <u>S</u> and <u>R</u> inputs are HIGH, the outputs are invalid (undefined state).

> The waveform below shows the operation of **RS Latch based NOR** gates.

2. RS latch using NAND gates

- > It is possible to construct the RS latch using *NAND gates*.
- > The circuit and Truth table of RS latch using NAND is shown below:

3. Clocked RS latch uses a clock signal

- The circuit below shows the level sensitive RS latch. Control signal "Enable" E is used to gate the input S and R to the RS Latch.
 - \circ When Enable *E* is *HIGH*, both the *AND* gates act as *buffers* and thus *R* and *S* appears at the *RS* latch input and it functions like a normal *RS* latch.
 - When Enable *E* is *LOW*, it drives *LOW* to both inputs of *RS* latch (:S = 0, R = 0, i.e. the not change mode).

4. D Latch

- > An RS-flip flop is rarely used in actual sequential logic; however, it is the fundamental building block for the very useful.
- > The RS latch contains an invalid state; to eliminate this state we can ensure that S and R are never equal (Avoids the SR = 11 state).
- To eliminate this state, we connect S and R together with an inverter. Thus we have D Latch.
- The D-flip flop has only a single data input, this input is called D or Data input.
- That data input is connected to the S input of an RS-flip flop, while the inverse of D is connected to the R input.
- > D latch is called delay flip-flop or delay latch also.

> Below is the truth table and circuit of D latch.

- In real world designs (ASIC/FPGA Designs) only D latches/Flip-Flops are used.
- To allow the flip flop to be in a holding state, a D-flip flop has a second input called ``Enable."

